Precise Spectral Asymptotics for Nonlinear Sturm–Liouville Problems
نویسندگان
چکیده
منابع مشابه
Spectral asymptotics and bifurcation for nonlinear multiparameter elliptic eigenvalue problems
This paper is concerned with the nonlinear multiparameter elliptic eigenvalue problem u′′(r) + N − 1 r u′(r) + μu(r)− k ∑ i=1 λifi(u(r)) = 0, 0 < r < 1, u(r) > 0, 0 ≤ r < 1, u′(0) = 0, u(1) = 0, where N ≥ 1, k ∈ N and μ, λi ≥ 0 (1 ≤ i ≤ k) are parameters. The aim of this paper is to study the asymptotic properties of eigencurve μ(λ, α) = μ(λ1, λ2, · · · , λk, α) with emphasis on the phenomenon ...
متن کاملSpectral asymptotics for inverse nonlinear Sturm-Liouville problems
We consider the nonlinear Sturm-Liouville problem −u′′(t) + f(u(t), u′(t)) = λu(t), u(t) > 0, t ∈ I := (−1/2, 1/2), u(±1/2) = 0, where f(x, y) = |x|p−1x − |y|m, p > 1, 1 ≤ m < 2 are constants and λ > 0 is an eigenvalue parameter. To understand well the global structure of the bifurcation branch of positive solutions in R+ ×Lq(I) (1 ≤ q < ∞) from a viewpoint of inverse problems, we establish the...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Generalized spectral decomposition for stochastic nonlinear problems
We present an extension of the Generalized Spectral Decomposition method for the resolution of non-linear stochastic problems. The method consists in the construction of a reduced basis approximation of the Galerkin solution and is independent of the stochastic discretization selected (polynomial chaos, stochastic multi-element or multiwavelets). Two algorithms are proposed for the sequential c...
متن کاملInverse Spectral Problems for Nonlinear Sturm-liouville Problems
This paper concerns the nonlinear Sturm-Liouville problem −u′′(t) + f(u(t)) = λu(t), u(t) > 0, t ∈ I := (0, 1), u(0) = u(1) = 0, where λ is a positive parameter. We try to determine the nonlinear term f(u) by means of the global behavior of the bifurcation branch of the positive solutions in R+ × L2(I).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2002
ISSN: 0022-0396
DOI: 10.1006/jdeq.2001.4061